Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The antifouling properties of self-assembled monolayers (SAMs) on gold generated from custom-designed bidentate unsymmetrical spiroalkanedithiols containing both oligo(ethylene glycol) and hydrocarbon tailgroups (EG3C7-C7 and EG3C7-C18) were evaluated and compared to SAMs derived from analogous monodentate octadecanethiol (C18SH) and the tri(ethylene glycol)-terminated alkanethiol EG3C7SH. Complementary techniques, including in situ surface plasmon resonance spectroscopy (SPR), ex situ electrochemical quartz crystal microbalance (QCM) measurements, and ex situ ellipsometric thickness measurements, were employed to assess the protein resistance of the SAMs using proteins having a wide range of sizes, structures, and properties: protamine, lysozyme, bovine serum albumin (BSA), and fibrinogen. The studies found that SAMs generated from the bidentate adsorbates EG3C7-C7 and EG3C7-C18, which contain a 1:1 mixture of OEG and hydrocarbon tailgroups, exhibited a diminished capacity to resist protein adsorption compared to the EG3C7SH SAMs, which possess only OEG tailgroups. The data highlight the critical role of hydration of the OEG matrix for generating antifouling OEG-based surface coatings.more » « less
-
A custom-designed series of unsymmetrical spiroalkanedithiols having tailgroups comprised of a terminally fluorinated chain and a hydrocarbon chain of varying lengths were synthesized and used to prepare self-assembled monolayers (SAMs) on gold substrates. The specific structure of the adsorbates was of the form [CH3(CH2)n][CF3(CF2)7(CH2)8]C[CH2SH]2, where n = 7, 9, and 15 (designated as F8H10-C10, F8H10-C12, and F8H10-C18, respectively). The influence of the length of the hydrocarbon chain in the bidentate dithiol on the structure and interfacial properties of the monolayer was explored. A structurally analogous partially fluorinated monodentate alkanethiol and the corresponding normal alkanethiols were used to generate appropriate SAMs as reference systems. Measurements of ellipsometric thickness showed an unexpectedly low film thickness for the SAMs derived from the bidentate adsorbates, possibly due to disruptions in interchain packing caused by the fluorocarbon chains (i.e., phase-incompatible fluorocarbon-hydrocarbon interactions), ultimately giving rise to loosely packed and disordered films. Analysis by X-ray photoelectron spectroscopy (XPS) were also consistent with a model in which the films were loosely packed; additionally, the XPS spectra confirmed the attachment of the sulfur headgroups of the bidentate adsorbates onto the gold substrates. Studies of the SAMs by polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS) suggested that as the length of the hydrocarbon chain in the adsorbates was extended, a more ordered surface was achieved by reducing the tilt of the fluorocarbon segment. The wettability data indicated that the adsorbates with longer alkyl chains were less wettable than those with shorter alkyl chains, likely due to an increase in interchain van der Waals forces in the former.more » « less
An official website of the United States government
